Efficacy of immune-checkpoint inhibitors (ICIs) in the treatment of older adults with metastatic renal cell carcinoma (mRCC): An International mRCC Database Consortium (IMDC) analysis

Daniel V. Araujo¹, J. Connor Wells², Aaron R. Hansen¹, Nazli Dizman³, Sumanta K Pal³, Benoit Beuselinck⁴, Frede Donskov⁵, Chun L .Gan², Flora Yan⁶, Ben Tran⁷, Christian K. Kollmannsberger⁸, Guillermo de Velasco⁹, Takeshi Yuasa¹⁰, M. Neil Reaume¹¹, D. Scott Ernst¹², Thomas Powles¹³, Georg A Bjarnason¹⁴, Toni K. Choueiri¹⁵, Daniel YC Heng², Shaan Dudani²

¹Princess Margaret Cancer Centre, Toronto, ON, Canada; ²Tom Baker Cancer Centre, University of Calgary, AB, Canada; ³City of Hope Comprehensive Cancer Centre, Duarte, CA; ⁴University Hospitals Leuven, Belgium; ⁵Aarhus University Hospital, Aarhus, Denmark; ⁶University of Texas Southwestern Medical Center, Dallas, TX, USA; ⁷Peter MacCallum Cancer Centre, Melbourne, Australia; ⁸BC Cancer-Vancouver Centre, Vancouver, BC, Canada; ⁹University Hospital 12 de Octubre, Madrid, Spain; ¹⁰Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan; ¹¹The Ottawa Hospital Cancer Centre, University of Ottawa, ON, Canada; ¹²London Regional Cancer Program, London Health Sciences Centre and University of Western Ontario, London, ON, Canada; ¹³Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; ¹⁴Sunnybrook Research Institute, Toronto, ON, Canada; ¹⁵Dana-Farber Cancer Institute/Brigham and Women's Hospital/Harvard Medical School, Boston, MA

Background

- In metastatic renal-cell carcinoma (mRCC), inhibitors of the immune checkpoint programmed cell death protein-1 (PD-1) and its ligand (PD-L1), are now standard of care as either first-¹ or second-line² treatment.
- Despite not being excluded, older adults were underrepresented in registration trials of immune checkpoint inhibitors (ICIs).
- Given that immunological senescence may affect the anti-tumor activity of ICIs³, there is uncertainty about the efficacy of ICIs in this population.
- Here we provide real world data on outcomes of older adults with mRCC treated with ICIs.

Methods

- Using the IMDC dataset, we identified all patients treated with a PD(L)1 ICI monotherapy or combination treatment in 1L, 2L or 3L between 2000-2019 and compared outcomes of older versus younger adults.
- Older adult was defined as \geq 70-years at the time of ICI treatment initiation.
- Patients treated as part of a clinical trial were permitted for inclusion.
- Outcome measures of interest were: overall survival (OS); time to treatment failure (TTF); and response rate (RR)
- Summary statistics were calculated for all categorical variables. Multivariable Cox regression analysis was performed to control for imbalances in IMDC risk factors, line of therapy and histology.

Results

- 1427 patients with mRCC treated with PD(L)1 ICIs were included. Of those, 397 (28%) were older adults.
- **Table 1** summarizes demographic characteristics.
- **Table 2** summarizes outcomes of interest.
- RR between younger and older adults was significantly different (p = 0.01) and favored those <70 yrs. This was mainly driven by 1L results (p = 0.02)
- After adjustments, there was no difference in TTF and OS between younger and older adults.

Correspondence to: Daniel YC Heng MD MPH FRCPC, Tom Baker Cancer Centre, Calgary, Alberta, Canada. 🔤 Daniel.Heng@ahs.ca 😏 @DrDanielHeng

Abstract #5058

Table 1: Baseline Characteristics and IMDC Risk Factors				
	Age < 70 (N = 1030)	Age ≥ 70 (N = 397)	P-value	
Age, median (range)	60 (22-69)	74 (70-92)	<0.01	
Male	761 (74%)	284 (71%)	0.34	
ccRCC	859/985 (89%)	311/365 (85%)	0.02	
Nephrectomy	841/1029 (82%)	313/396 (79%)	0.24	
IMDC Risk Groups			0.55	
Favorable	142/781 (18%)	46/299 (16%)		
Intermediate	462/781 (59%)	183/299 (61%)		
Poor	177/781 (23%)	70/299 (23%)		
Missing	249	98		
IMDC Risk Factors				
KPS < 80*	156/934 (17%)	74/365 (20%)	0.13	
Diagnosis to therapy < 1 yr	604/1030 (58%)	204/397 (51%)	0.01	
Calcium > ULN*	121/845 (14%)	41/330 (12%)	0.40	
Hemoglobin < LLN*	526/946 (55%)	232/366 (63%)	0.01	
Neutrophils > ULN*	89/922 (9%)	44/356 (12%)	0.15	
Platelets > ULN*	123/943 (13%)	31/366 (8%)	0.02	
Line of ICI				
1L	443/1030 (43%)	128/397 (32%)	<0.01	
2L	478/1030 (46%)	215/397 (54%)		
3L	109 /1030 (11%)	54/397 (14%)		
1L ICI Treatments				
IO monotherapy	81/443 (18%)	27/128 (21%)		
IO-IO	193/443 (44%)	61/128 (48%)	0.35	
IO-VEGF	169/443 (38%)	40/128 (31%)		

clear-cell renal-cell carcinoma; ULN = Upper limit of normal

Table 2: Outcomes of Interest

	Age < 70 (N = 1030)	Age ≥ 70 (N = 397)	P-value	
Response Rate (%)	31	24	0.01	
1L RR	44	31	0.02	
2L-3L RR	20	20	0.86	
Best Response				
CR	28/794 (3%)	2/278 (1%)		
PR	222/794 (28%)	64/278 (23%)	< 0.01	
SD	259/794 (33%)	128/278 (46%)		
PD	285/794 (36%)	84/278 (30%)		
Time to Treatment Failure				
(months)	6.9 (5.7 – 8.3)	6.9 (5.5 - 8.4)	0.40	
1L TTF	9.6 (7.8 – 11.8)	6.9 (4.96 – 9.3)	0.15	
2L-3L TTF	5.0 (4.2 - 6.1)	6.9 (5.26 – 9.4)	0.66	
Overall Survival (months)	30.9 (26.4 – 35.3)	25.0 (18.9 – 30.1)	<0.01	
1L OS	41.4 (31.6 – 54.8)	28.5 (18.0 – 53.6)	0.01	
2L-3L OS	25.9 (21.9 – 30.4)	23.8 (17.6 – 30.0)	0.34	
Adjusted Hazard Ratios				
Time to Treatment Failure	0.95 (0.79 – 1.14)		0.59	
Overall Survival	1.02 (0.79 – 1.30)		0.86	

Progressive disease; PR = Partial response; SD = Stable disease

Conclusions

- having a lower RR.

References

- Medicine 373:1803-1813, 2015
- and Molecular Allergy 15:21, 2017

Figure 1: Overall Survival

Figure 2: Time to Treatment Failure

• After multivariate adjustment, older adults with mRCC treated with ICI had no difference in OS and TTF compared to younger adults despite

• Older age is not an independent risk factor for survival; thus treatment selection should not be based solely on chronological age.

1. Motzer RJ, Rini BI, McDermott DF, et al: Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. The Lancet Oncology 20:1370-1385, 2019 2. Motzer RJ, Escudier B, McDermott DF, et al: Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. New England Journal of

3. Ventura MT, Casciaro M, Gangemi S, et al: Immunosenescence in aging: between immune cells depletion and cytokines up-regulation. Clinical www.IMDConline.com