1455P – Characterization of patients with metastatic renal cell carcinoma achieving complete response to first-line therapies: Results from the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC)

Kosuke Takemura¹, Vishal Navani¹, Matthew S. Ernst¹, J. Connor Wells², Toni K. Choueiri³, Luis Meza⁴, Sumanta K. Pal⁴, Jae-Lyun Lee⁵, Haoran Li⁶, Neeraj Agarwal⁶, Ajjai S. Alva⁷, Aaron R. Hansen⁸, Naveen S. Basappa⁹, Bernadett Szabados¹⁰, Thomas Powles¹⁰, Ben Tran¹¹, Christopher M. Hocking¹², Benoit Beuselinck¹³, Takeshi Yuasa¹⁴, Daniel Y.C. Heng¹

¹Tom Baker Cancer Centre, University of Calgary, Calgary, Calgary, AB, Canada; ²BC Cancer Agency, Vancouver, BC, Canada; ³Dana-Farber Cancer Institute, Boston, MA, United States of America; ⁵Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ⁶Huntsman Cancer Institute, University of America; ⁸Princess Margaret Cancer Centre, University of America; ⁹Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada; 10 Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; 14 Cancer Institute Hospital of JFCR, Tokyo, Japan

Background

- Immuno-oncology (IO)-based combinations have demonstrated higher complete response (CR) rates compared to vascular endothelial growth factor-targeted therapy (VEGF-TT)¹⁻⁶
- This study aimed to characterize patients with metastatic renal cell carcinoma (mRCC) who experienced CR to first-line therapies

Methods

- The IMDC database was used to identify response-evaluable patients who received either first-line IO-based combination therapy or VEGF-TT (ie., sunitinib or pazopanib) between 2005 and 2021
- The best overall response was evaluated by investigators according to the revised RECIST guideline (version 1.1)7
- The primary outcome was the CR rate in the IO-based and VEGF-TT cohorts, and secondary outcomes were baseline characteristics of those who experienced CR vs. non-CR and overall survival (OS)
- Baseline characteristics were compared using Fisher's exact tests for proportions or Mann–Whitney U tests for medians, and Kaplan– Meier survival curves were compared using log-rank tests

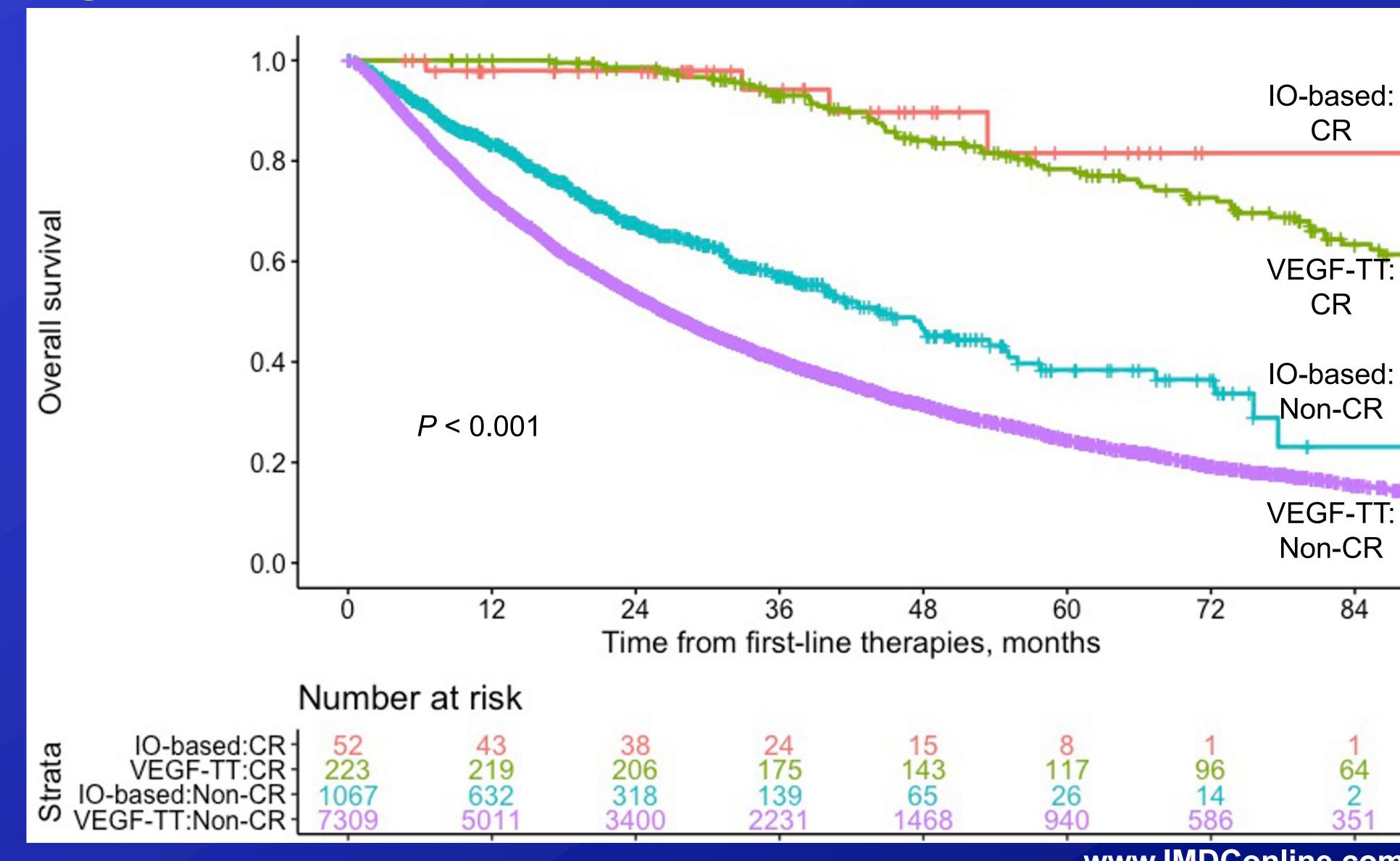
Results

- CR rates were 4.6% (52/1126) in the IO-based cohort and 3.0% (223/7557) in the VEGF-TT cohort, giving an odds ratio for CR by IO-based combinations (vs. VEGF-TT) of 1.56 (95% CI 1.11–2.17; P = 0.009) after adjustment for the IMDC risk
- Absence of bone metastasis and favourable/intermediate IMDC risk were significantly associated with CR in both cohorts (Table)
- Among those who experienced CR, non-clear cell histology, sarcomatoid dedifferentiation, and multiple sites of metastases were more frequently observed in the IO-based cohort (Table)
- CR was an indicator of favourable OS regardless of first-line therapies given (Figure)

Correspondence to: Daniel YC Heng MD MPH FRCPC, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta, Canada. Daniel.Heng@ahs.ca

Conclusions

- The CR rate was higher in the IObased cohort (4.6%) than in the VEGF-TT cohort (3.0%)
- Real-world CR rates were not as high as those in clinical trials
- IO-based combinations achieved CR in patients with traditional adverse clinicopathological features (non-clear cell histology, sarcomatoid dedifferentiation, and multiple sites of metastases)


References

- Motzer RJ *et al.* Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. **N** Engl J Med. 2018;378(14):1277-1290.
- 2. Rini BI et al. Atezolizumab plus Bevacizumab versus Sunitinib in Patients with Previously Untreated Metastatic Renal Cell Carcinoma (IMmotion151): A Multicentre, Open-label, Phase 3, Randomised Controlled Trial. *Lancet.* 2019;393(10189):2404-2415.
- 3. Rini BI *et al.* Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. *N* Engl J Med. 2018;380(12):1116-1127.
- 4. Motzer RJ et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. **N Engl J Med.** 2019;380(12):1103-1115. 5. Choueiri TK et al. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma.
- N Engl J Med. 2021;384(9):829-841. 6. Motzer R et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N
- Engl J Med. 2021;384(14):1289-1300. 7. Eisenhauer EA et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). *Eur J Cancer.* 2009;45(2):228-247.

Table – Baseline patient demographics

	IO-based cohort						VEGF-TT cohort				
Variable, N (%)	CR		Non-CR		Р -	С	CR		Non-CR		
	(N = 52)		(N = 1074)			(N =	(N = 223)		(N = 7334)		
Age, year (IQR)	60.9	(52.1– 67.0)	62.7	(56.0 – 69.3)	0.156	61.1	(53.9– 68.1)	63.1	(55.7– 70.2)	0.005	
Non-clear cell	7/51	(13.7%)	124/957	(13.0%)	0.831	9/220	(4.1%)	780/6839	(11.4%)	< 0.001	
Sarcomatoid	14/47	(29.8%)	164/785	(20.9%)	0.147	24/178	(13.5%)	727/5506	(13.2%)	0.910	
Multiple sites	34/45	(75.6%)	763/978	(78.0%)	0.714	92/191	(48.2%)	4975/6549	(76.0%)	< 0.001	
Lung metastasis	32/51	(62.7%)	750/1057	(71.0%)	0.211	125/217	(57.6%)	4762/7015	(67.9%)	0.002	
Liver metastasis	5/50	(10.0%)	174/1038	(16.8%)	0.245	21/218	(9.6%)	1289/7004	(18.4%)	< 0.001	
Bone metastasis	9/52	(17.3%)	353/1049	(33.7%)	0.015	26/218	(11.9%)	2282/7007	(32.6%)	< 0.001	
Nodal metastasis	22/50	(44.0%)	531/1045	(50.8%)	0.386	75/215	(34.9%)	3255/6878	(47.3%)	< 0.001	
IMDC risk					0.021					< 0.001	
Favourable	12/45	(26.7%)	154/954	(16.1%)		40/184	(21.7%)	1124/5961	(18.9%)		
Intermediate	28/45	(62.2%)	542/954	(56.8%)		121/184	(65.8%)	3331/5961	(55.9%)		
Poor	5/45	(11.1%)	258/954	(27.0%)		23/184	(12.5%)	1506/5961	(25.3%)		

Figure – Kaplan–Meier OS estimator

www.IMDConline.com