4538

Characterizing progression to subsequent lines of therapy in metastatic renal cell carcinoma (mRCC) after nivolumab + ipilimumab (Nivo+Ipi): Results from the International mRCC Database Consortium (imdc

Christian K. Kollmannsberger², Georg A. Bjarnason¹², Haoran Li¹³, Ravindran Kanesvaran¹⁴, Thomas Powles¹⁵, Rana R McKay¹⁶, Toni K. Choueiri¹⁷ and Daniel Y.C. Heng¹

Audreylie Lemelin¹, Kosuke Takemura¹, Matthew S. Ernst¹, J. Connor Wells², Frede Donskov^{3,4}, Camillo Porta⁵, Guillermo De Velasco⁶, Ian D. Davis⁷, Lori A. Wood⁸, Sumanta K. Pal⁹, Aaron R. Hansen¹⁰, Ben Tran¹¹, ¹ Tom Baker Cancer Centre, University of Calgary, Calgary, Calgary, Alberta, Canada, ²BC Cancer Agency, Vancouver, British Columbia, Canada, ³Aarhus University of Bari 'A. Moro', Bari, Italy, ⁶Medical Oncology Department, Hospital, University of Calgary, C ⁷Eastern Health Clinical School, Melbourne, Australia, ⁸Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, Canada, ¹¹Peter MacCallum Cancer Centre, Melbourne, Australia, ¹²Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada, ¹ ¹³Huntsman Cancer Institute, University of Utah, Salt Lake City, United States, ¹⁴National Cancer Centre Singapore, ¹⁵Barts Cancer Center, University of California San Diego, La Jolla, United States, ¹⁷Dana-Farber Cancer Institute, Boston, MA, United States.

Background

- The standard of care first-line (1L) treatment for mRCC has changed in recent years towards immuno-oncology (IO) based combination therapies.
- Treatment patterns and number of lines of therapy beyond 1L are not well characterized in mRCC in the era of IO-based combinations.

Objective

• We aimed to quantify the attrition rates by line of therapy and to examine predictors of receiving second-line (2L) treatment.

Methods

Study population

• Patients from the IMDC who received 1L Nivolumab + Ipilimumab (Nivo + Ipi) were included in this real-world, retrospective database study.

Outcomes

- Primary outcome: Retention rate to 2L therapy, defined as the proportion of patients who started any 2L treatment out of the patients who stopped 1L.
- Secondary outcomes: Retention rates to third (3L) and fourth-line (4L) therapy, overall response rate (ORR) to 1L in the cohorts of patients who received and did not receive 2L, defined as per RECIST 1.1 criteria.

Statistical analysis

- Patients' characteristics and outcomes were described using the median values with their standard deviation (SD) for continuous variables and proportions for categorical variables.
- Differences between the patients who underwent 2L therapy and those who did not were compared using Pearson chi-squared test, with a significance value of p<0.05.
- A logistic regression model was used to assess potential predictors of getting 2L therapy.

Results

Population

• 995 patients were treated with 1L Nivo+Ipi, with a data cut-off date of October 2022, of whom 704 patients stopped first-line therapy and were deemed eligible for 2L.

Attrition rates

• The flow diagram in Figure 1 shows the attrition rates from 2L to 4L therapy.

Predictors of receiving 2L

- In univariable analysis, patients who started 2L were more likely to be younger, have clearcell histology, bone metastases, only one site of metastases, and to have stopped 1L for progressive disease (PD) and less likely to be poor risk by IMDC criteria (Table 1).
- After adjusting for IMDC criteria, no predictors of receiving 2L therapy remained significant in multivariate analysis after Bonferroni correction.
- (Patients who stopped for PD were more likely to initiate 2L than those who stopped for other reasons (81.7% vs 43.0%, p < 0.0001)Table 2).

<u>ORR</u>

• The overall response rate to 1L therapy was lower in patients who received 2L than in those who did not: 18.5% (76/366) and 33.7% (99/245), respectively (p < 0.001, Table 4)

Limitations

- Potential biases include:
 - Selection bias, as all patients who had stopped 1L were deemed "eligible" for 2L.
 - Missing data from the IMDC database, which may bias study results if missingness is not random
 - Potential unmeasured confounding could account for some of the associations observed.

 \bullet

Conclusions

In this real-world analysis, over half of eligible patients received the subsequent line of therapy, with no identifiable predictors of 2L therapy initiation.

Attrition rates between lines of therapy have important implications for patient counseling, cost analyses and clinical trial design.

Abbreviations: 1L: First-line, 2L : Second-line, 3L: third-line, 4L : Fourth-line

Table 1 : Characteristics of patients eligible for, and of patients who received or did not receive 2L

	Overall N=704		2L = NO (N=294)		2L= YES (N=410)		P value*	
Median Age								
	63		66		62		<0.0001	
Sex								
Male	504	71.6%	192	65.3%	303	73.9%		
Female	200	28.4%	93	31.6%	107	26.1%	0.06	
Ethnicity								
Caucasian	417	59.2%	168	57.1%	249	60.7%		
Asian	68	9.7%	28	9.5%	40	9.8%	0.75	
Black	8	1.1%	2	0.7%	6	1.5%	0.75	
Other	32	4.5%	11	3.7%	21	5.1%		
IMDC								
Favorable	58	8.2%	23	7.8%	35	8.5%		
Intermediate	350	49.7%	127	43.2%	223	54.4%	0.03	
Poor	212	30.1%	101	34.4%	111	27.1%		
Histology								
ccRCC	493	70.0%	185	62.9%	308	75.1%	0.02	
Sarcomatoid features	102	14.5%	46	15.6%	56	13.7%	0.13	
Disease presentation								
De novo IV	388	55.1%	163	55.4%	225	54.9%	0.75	
Recurrent IV	304	43.2%	124	42.2%	180	43.9%	0.75	
Nephrectomy								
Yes	417	59.2%	164	55.8%	253	61.7%	0.11	
Site of metastases								
Brain	58	8.2%	31	10.5%	27	6.6%	0.06	
Liver	129	18.3%	53	18.0%	76	18.5%	0.86	
Bone	250	35.5%	87	29.6%	163	39.8%	0.008	
>1 site of met	516	73.3%	218	74.1%	298	72.7%	0.01	
Reason for stopping 1 L								
Progression	278	39.5%	51	17.3%	227	55.4%		
Death	30	4.3%	30	10.2%	0	0%		
Toxicity	176	25.0%	76	25.9%	100	24.4%	<0.00001	
CR	11	1.6%	9	3.1%	2	0.5%		
Other or missing	209	29.7%	128	43.5%	81	19.8%		

Abbreviations: 2L: second-line, IMDC: International metastatic renal cell carcinoma database consortium, ccRCC: clear cell renal cell carcinoma, IV: stage IV disease, met: metastasis, 1L: First-line, CR: Complete response. Note: Italics indicate p value <0.05. P values are comparisons of 2L=NO vs 2L= YES

Table 2 : Proportions of patients who did and did not receive 2L classified by reason for stopping 1L

	Reason for stopping 1					
L	-	2L=NO		2L=	P value	
P	Progression (N=278)	51	18.3%	227	81.7%	< 0.0001
A	All other reasons (n=426)	243	57.0%	183	43.0%	< 0.0001
	Toxicity (N=176)	76	43.2%	100	57.1%	
	CR (N=11)	9	81.8%	2	18.2%	< 0.0001
	Death (N=30)	30	100.0%	0	0.0%	< 0.0001
via	Unclassified (N=209)	128	61.2%	81	38.8%	

Table 3 : Best responses and overall response rates to 1L therapy

Best response to 1L	Overall (N	l=704)	2L = NO (N:	=294)	2L =YES	(N=410)	P value
Progression	225	32.0%	58	19.7%	167	40.7%	
Stable disease	211	30.0%	88	29.9%	123	30.0%	
PR	147	20.9%	76	25.9%	71	17.3%	< 0.00001
CR	28	4.0%	23	7.8%	5	1.2%	
Unknown	93	13.2%	49	16.7%	44	10.7%	
ORR	175	24.9%	99	33.7%	76	18.5%	< 0.001

Abbreviations: 1L:First-line, 2L: Second-line, PR: Partial response, CR: Complete response, ORR: Overall response rate. Corresponding author: Daniel YC Heng, MD, MPH, FRCPC, Tom Baker Cancer Centre, Calgary, AB, Canada Daniel.heng@albertahealthservices.ca